Senin, 04 Juni 2012

Komunikasi Matematika



 
Komunikasi Matematika
By: Marzuki Ahmad




PENDAHULUAN
1.1    Latar Belakang
Kemampuan komunikasi matematika merupakan hal yang sangat penting dan perlu ditingkatkan dalam pembelajaran matematika karena komunikasi bisa membantu pembelajaran siswa tentng konsep matematika ketika mereka memerankan situasi, menggambar, menggunakan objek, memberikan laporan dan penjelasan verbal. Keuntungan sampingannya adalah bisa mengingatkan siswa bahwa mereka berbagi tanggung jawab dengan guru atas pembelajaran yang muncul dalam pembelajaran tertentu. Hal ini sesuai dengan yang diungkapkan oleh Turmudi (2008) “Aspek komunikasi dan penalaran hendaknya menjadi aspek penting dalam pembelajaran matematika. Aspek komunikasi melatih siswa untuk dapat mengkomunikasikan gagasannya, baik komunikasi lisan maupun komunikasi tulis”.
Baroody (dalam Ansarim 2009) menyebutkan sedikitnya ada dua alasan penting mengapa komunikasi matematika perlu ditumbuhkembangkan dikalangan siswa. Pertama, mathematics as language, artinya matematika tidak hanya sekedar alat bantu berfikir (a tool to aid thingking), alat untuk menemukan pola, menyelesaikan masalah atau mengambil kesimpulan, tetapi matematika juga sebagai suatu alat yang berharga untuk mengkomuniksikan berbagai ide secara jelas, tepat, dan cermat. Kedua, mathematics learning as social activity, artinya sebagai aktivitas sosial dalam pembelajaran matematika, matematika juga sebagai wahana interaksi antar siswa dan juga komunikasi antar guru dan siswa.
Sayangnya kemampuan komunikasi matematika siswa jarang mendapat perhatian. Guru lebih berusaha agar siswa mampu menjawab soal dengan benar tanpa meminta alasan atau jawaban siswa, ataupun meminta siswa untuk mengkomunikasikan pemikiran, ide dan gagasannya. Hal ini sesuai dengan pendapat Cai, Lane, dan Jakabcsin (dalam Ester, 1996) yang mengemukakan bahwa karena siswa jarang diminta untuk berargumentasi dalam pembelajaran matematika, akibatnya sangat asing bagi mereka untuk berbicara tentang matematika.
Berdasarkan penjelasan tersebut di atas, dapat dipahami bahwa upaya peningkatan komunikasi matematika menjadi sangat penting dan merupakan salah satu kunci keberhasilan dalam pembelajaran matematika.

1.2. Rumusan Masalah
Dari uraian di atas, yang menjadi permasalahan dalam tulisan ini adalah “bagaimana cara menumbuhkembangkan kemampuan komunikasi matematika siswa”

1.3. Tujuan
            Tujuan penulisan makalah ini adalah untuk mengetahui cara menumbuhkembangkan kemampuan komunikasi matematika siswa.

PEMBAHASAN
2.1. Kemampuan Komunikasi
Matematika adalah bahasa yang melambangkan serangkaian makna dari pernyataan yang ingin disampaikan. Menurut Fathoni matematika dipandang sebagai bahasa karena “dalam matematika terdapat sekumpulan lambang/simbol dan kata (baik kata dalam bentuk lambang)”. Misalnya “ >” yang melambangkan kata “lebih besar”, maupun kata yang diadobsi dari bahasa biasa, misalnya kata “fungsi” yang dalam matematika menyatakan suatu hubungan dengan aturan tertentu antara unsur-unsur dalam dua buah himpunan. Simbol-simbol matematika bersifat “artificial” yang baru memiliki arti setelah sebuah makna diberikan kepadanya. Tanpa itu, maka matematika hanya merupakan kumpulan simbol dan rumus yang kering akan makna. Berkaitan dengan hal ini, tidak jarang kita jumpai dalam kehidupan, banyak orang yang berkata bahwa X, Y, Z itu sama sekali tidak memiliki arti. 
 Ketika sebuah konsep informasi matematika diberikan oleh seorang guru kepada peserta didiknya ataupun peserta didik mendapatkannya sendiri melalui bacaan, maka saat itu sedang terjadi transformasi informasi matematika dari komunikator kepada komunikan. Respon yang diberikan komunikan merupakan interpretasi komunikan tentang informasi tadi. Dalam matematika, kualitas interpretasi dan respon itu seringkali menjadi masalah istimewa. Hal ini sebagai salah satu akibat dari karakteristik matematika itu sendiri yang sarat dengan istilah dan simbol. Karena itu, kemampuan berkomunikasi dalam matematika menjadi tuntutan khusus.
Matematika umumnya identik dengan perhitungan angka-angka dan rumus-rumus, sehingga muncullah anggapan bahwa skill komunikasi tidak dapat dibangun pada pembelajaran matematika. Anggapan ini tentu saja tidak tepat, karena menurut Greenes dan Schulman, komunikasi matematika memiliki peran:
(1)       kekuatan sentral bagi siswa dalam merumuskan konsep dan strategi matematika;
(2)       modal keberhasilan bagi siswa terhadap pendekatan dan penyelesaian dalam eksplorasi dan investigasi matematika;
(3)       wadah bagi siswa dalam berkomunikasi dengan temannya untuk memperoleh informasi, membagi pikiran dan penemuan, curah pendapat, menilai dan mempertajam ide untuk meyakinkan yang lain.

Kemampuan berkomunikasi menjadi salah satu syarat yang memegang peranan penting karena membantu dalam proses penyusunan pikiran, menghubungkan gagasan dengan gagasan lain sehingga dapat mengisi hal-hal yang kurang dalam seluruh jaringan gagasan siswa. Sejalan dengan itu, Lindquist (dalam Fitrie, 2002: 16) menyatakan bahwa kita memerlukan komunikasi dalam matematika jika hendak meraih secara penuh tujuan sosial, seperti melek matematika, belajar seumur hidup, dan matematika untuk semua orang.
           
Bahkan membangun komunikasi matematika menurut National Center Teaching Mathematics (NCTM) memberikan manfaat pada siswa berupa:
1.      Memodelkan situasi dengan lisan, tertulis, gambar, grafik, dan secara aljabar.
2.      Merefleksi dan mengklarifikasi dalam berpikir mengenai gagasan-gagasan matematika dalam berbagai situasi.
3.      Mengembangkan pemahaman terhadap gagasan-gagasan matematika termasuk peranan definisi-definisi dalam matematika.
4.      Menggunakan keterampilan membaca, mendengar, dan menulis untuk menginterpretasikan dan mengevaluasi gagasan matematika.
5.      Mengkaji gagasan matematika melalui konjektur dan alasan yang meyakinkan.
6.      Memahami nilai dari notasi dan peran matematika dalam pengembangan gagasan matematika.
Aktivitas guru yang dapat menumbuhkembangkan kemampuan komunikasi matematika siswa antara lain:
1.      Mendengarkan dan melihat dengan penuh perhatian ide-ide siswa
2.      Menyelidiki pertanyaan dan tugas-tugas yang diberikan, menarik hati, dan menantang siswa untuk berpikir
3.      Meminta siswa untuk merespon dan menilai ide mereka secara lisan dan tertulis
4.      Menilai kedalaman pemahaman atau ide yang dikemukakan siswa dalam diskusi
5.      Memutuskan kapan dan bagaimana untuk menyajikan notasi matematika dalam bahasa matematika pada siswa
6.      Memonitor partisipasi siswa dalam diskusi, memutuskan kapan dan bagaimana untuk memotivasi masing-masing siswa untuk berpartisipasi (lihat pada langkah ke tiga dan empat: bina ingatan dan beri bintang).

Sedangkan indikator kemampuan siswa dalam komunikasi matematis pada pembelajaran matematika menurut NCTM (1989 : 214) dapat dilihat dari :
1)      Kemampuan mengekspresikan ide-ide matematika melalui lisan, tertulis, dan mendemonstrasikannya serta menggambarkannya secara visual;
2)      Kemampuan memahami, menginterpretasikan, dan mengevaluasi ide-ide Matematika baik secara lisan maupun dalam bentuk visual lainnya;
3)      Kemampuan dalam menggunakan istilah-istilah, notasi-notasi Matematika dan struktur-strukturnya untuk menyajikan ide, menggambarkan hubungan-hubungan dan model-model situasi.
Within (1992) menyatakan kemampuan komunikasi menjadi penting ketika diskusi antar  siswa dilakukan, dimana siswa diharapkan mampu menyatakan, menjelaskan, menggambarkan, mendengar, menanyakan dan bekerjasama sehingga dapat membawa siswa pada pemahaman yang mendalam tentang matematika. Anak-anak yang diberikan kesempatan untuk bekerja dalam kelompok dalam mengumpulkan dan menyajikan data, mereka menunjukkan kemajuan baik di saat mereka saling mendengarkan ide yang satu dan yang lain, mendiskusikannya bersama kemudian menyusun kesimpulan yang menjadi pendapat kelompoknya. Ternyata mereka belajar sebagian besar dari berkomunikasi dan mengkontruksi sendiri pengetahuan mereka.
Sedangkan menurut Sumarmo (2003) komunikasi matematis meliputi kemampuan siswa:
(1)   menghubungkan benda nyata, gambar, dan diagram ke dalam idea matematika;
(2)   menjelaskan idea, situasi dan relasi matematik secara lisan atau tulisan dengan benda nyata, gambar, grafik dan aljabar;
(3)   menyatakan peristiwa sehari-hari dalam bahasa atau simbol matematika;
(4)   mendengarkan, berdiskusi, dan menulis tentang matematika;
(5)   membaca dengan pemahaman atau presentasi matematika tertulis;
(6)   membuat konjektur, menyusun argument, merumuskan definisi dan generalisasi;
(7)   menjelaskan dan membuat pertanyaan tentang matematika yang telah dipelajari.
Secara umum, matematika dalam ruang lingkup komunikasi mencakup keterampilan/kemampuan menulis, membaca, discussing and assessing, dan wacana (discourse). Tanpa komunikasi dalam matematika kita akan memiliki sedikit keterangan, data, dan fakta tentang pemahaman siswa dalam melakukan proses dan aplikasi matematika. Shadiq (2004) “Matematika merupakan alat komunikasi yang sangat kuat, teliti dan tidak membingungkan”. Sebagai contoh, notasi 40 x 4 dapat digunakan untuk menyatakan berbagai hal, seperti:
-          Jarak tempuh sepeda motor selama 4 jam dengan kecepatan 40 km/jam.
-          Luas permukaan kolam dengan ukuran panjang 40 meter dan lebar 4 meter
-          Banyak roda pada 40 mobil
Contoh diatas telah menunjukkan bahwa notasi 40 x 4 dapat menyatakan suatu hal yang berbeda.
2.2 Proses Komunikasi Sebagai Sarana untuk Membelajarkan Matematika
Uraian terdahulu menjelaskan mengenai pengembangan kemampuan komunikasi dalam pembelajaran matematika. Di sisi lain, proses komunikasi yang terjalin dengan baik dapat membantu siswa membangun pemahamannya terhadap ide-ide matematika dan membuatnya menjadi lebih mudah dipahami. Ketika siswa ditantang untuk berpikir mengenai matematika dan mengkomunikasikannya kepada orang/siswa lain, secara lisan maupun tertulis, secara tidak langsung mereka dituntut untuk membuat ide-ide matematika itu lebih terstrukur dan menyakinkan, sehingga ide-ide itu menjadi lebih mudah dipahami, khususnya oleh diri mereka sendiri. Dengan demikian, proses komunikasi akan bermanfaat bagi siswa untuk meningkatkan pemahamannya mengenai konsep-konsep matematika.
Pembelajaran matematika perlu dirancang sedemikian sehingga dapat menstimulasi siswa untuk berkomunikasi dengan baik. Proses komunikasi yang baik ini diharapkan dapat menstimulasi siswa untuk mengembangkan berbagai ide-ide matematika atau membangun pengetahuannya. Hal demikian tidak akan terjadi apabila dalam pembelajaran matematika, semua siswa menggunakan pendekatan yang sama untuk menemukan suatu solusi tunggal dari masalah yang diberikan. Jawaban dan strategi yang tunggal terhadap suatu masalah kurang mendorong siswa untuk saling berkomunikasi karena masing-masing siswa akan lebih memfokuskan diri pada strategi mereka sendiri. Sebaliknya, jika siswa menggunakan berbagai pendekatan yang berbeda dalam menemukan solusi, maka akan memungkinkan mereka untuk bertukar ide dan menjelaskan ide-ide mereka. Dalam situasi demikian, proses komunikasi akan terjadi dengan baik. Dalam konteks demikian, penggunaan masalah terbuka (open-ended problem) menjadi sangat relevan dalam pembelajaran matematika dengan maksud untuk mengembangkan kemampuan komunikasi matematik sekaligus menstimulasi siswa untuk mengembangkan ide-ide matematikanya.
Menurut Takahashi (2006), masalah terbuka (open-ended problem) adalah masalah atau soal yang mempunyai banyak solusi atau strategi penyelesaian. Pada mulanya, penggunaan masalah terbuka merupakan hasil dari proyek penelitian pengembangan metode evaluasi keterampilan berpikir tingkat tinggi dalam pendidikan matematika dari tahun 1971 sampai 1976. Meskipun proyek ini dimaksudkan untuk mengembangkan teknik evaluasi keterampilan berpikir siswa, tetapi selanjutnya peneliti menyadari bahwa pembelajaran matematika yang menggunakan masalah terbuka mempunyai potensi yang kaya dalam meningkatkan kualitas pembelajaran. Peneliti merangkum manfaat dalam menggunakan masalah terbuka dalam pembelajaran matematika sebagai berikut.
1.Siswa menjadi lebih aktif dalam mengekspresikan ide-ide mereka dalam pembelajaran matematika.
2.Siswa mempunyai banyak kesempatan untuk secara komprehensif menggunakan pengetahuan dan keterampilan mereka.
3. Siswa mempunyai pengalaman yang kaya dalam proses menemukan dan menerima persetujuan dari siswa lain terhadap ide-ide mereka.
Dengan menggunakan masalah terbuka, pembelajaran matematika dapat dirancang sedemikian sehingga lebih memberikan kesempatan kepada siswa untuk mengembangkan kompetensi mereka dalam menggunakan ekspresi matematik (Takahashi, 2006). Dalam upaya menemukan berbagai alternatif strategi atau solusi suatu masalah, siswa akan menggunakan segenap kemampuannya dalam menggali berbagai informasi atau konsep-konsep yang relevan. Hal demikian akan mendorong siswa menjadi lebih kompeten dalam memahami ide-ide matematika. Hal demikian tidak akan terjadi apabila dalam pembelajaran yang hanya menggunakan soal tertutup yang hanya merujuk pada satu jawaban dan strategi penyelesaian. Penggunaan soal tertutup kurang mendorong siswa untuk mengeksplorasi berbagai ide-ide matematikanya, sehingga kurang memungkinkannya untuk secara efektif digunakan dalam mengembangkan kemampuan komunikasi matematika sekaligus membangun pemahaman matematik siswa. Berikut diberikan beberapa contoh soal terbuka yang dapat digunakan untuk mengembangkan kemampuan komunikasi matematik siswa.


Tabel 1. Contoh soal tertutup dan soal terbuka
Soal tertutup
(closed problem)
Soal terbuka
(open-ended problem)
Selesaikan x + 5 = 12
Tulis persamaan yang mempunyai selesaian 7
Tentukan rata-rata dari 45, 36, 52, 38, dan 44
Tentukan 5 bilangan asli berbeda yang rata-ratanya 43.
Rata-rata tiga bilangan adalah 11,2. Jika salah satu bilangan itu adalah 7,6, tentukan dua bilangan lainnya.

Tentukan
persegipanjang
luas dan keliling berikut.
6
Tentukan luas persegipanjang yang kelilingnya 36.
Sebuah persegipanjang mempunyai keliling 20 cm. Berapakah luasnya?

12

 
2.3. Mengembangkan Kemampuan Komunikasi dalam Pembelajaran Matematika
Guru mempunyai peran penting dalam merancang pengalaman belajar di kelas sedemikian sehingga siswa mempunyai kesempatan bervariasi untuk berkomunikasi secara matematis. Tugas menulis merupakan salah satu cara untuk membentuk kecakapan komunikasi matematik. Tugas menulis diartikan sebagai tugas bagi siswa untuk mengorganisasi, merangkum, dan mengkomunikasikan pemikiran mereka secara tertulis. Menulis dapat meningkatkan daya ingat mengenai konsep dan memberikan kesempatan kepada siswa untuk merefleksi pemikiran mereka. Tugas menulis dapat juga mencakup pengungkapan apa yang sudah diketahui/dipahami dan yang belum dipahami siswa. Selain itu, tugas menulis dapat pula berupa penyelesaian masalah. Penyelesaian masalah melibatkan beberapa kemampuan strategis seperti mengkoordinasikan berbagai informasi atau ide-ide matematika dan menggunakannya untuk menyelesaikan masalah.
Cara lain yang dip andang tepat untuk mengembangkan kemampuan komunikasi matematik siswa adalah berdikusi kelompok (LACOE, 2004). Diskusi kelompok memungkinkan siswa berlatih untuk mengekspresikan pemahaman, memverbalkan proses berpikir, dan mengklarifikasi pemahaman atau ketidakpahaman mereka. Dalam membentuk diskusi kelompok perlu diperhatikan beberapa hal, misalnya jenis tugas seperti apa yang memungkinkan siswa dapat mengeksplorasi kemampuan matematiknya dengan baik. Selain itu perlu dirancang pula peran guru dalam diskusi kelompok tersebut.
Dalam proses diskusi kelompok, akan terjadi pertukaran ide dan pemikiran antarsiswa. Hal ini akan memberikan kesempatan kepada siswa untuk membangun pemahaman matematiknya. Percakapan antarsiswa dan guru juga akan mendorong atau memperkuat pemahaman yang mendalam akan konsep-konsep matematika. Ketika siswa berpikir, merespon, berdiskusi, mengelaborasi, menulis, membaca, mendengarkan, dan menemukan konsep-konsep matematika, mereka mempunyai berbagai keuntungan, yaitu berkomunikasi untuk belajar matematika dan belajar untuk berkomunikasi secara matematik (NCTM, 2000). Hal demikian dapat diartikan bahwa proses komunikasi yang baik memungkinkan siswa untuk membangun pengetahuan matematikanya.
Proses komunikasi akan terjadi apabila terjadi interaksi dalam pembelajaran. Guru perlu merancang pembelajaran yang memungkinkan terjadinya interaksi positif sehingga memungkinkan siswa dapat berkomunikasi dengan baik. Guru dapat memberikan beberapa pertanyaan-pertanyaan pemicu bagi tumbuhnya kemauan dan kemampuan berkomunikasi siswa. Terdapat beberapa teknik bertanya yang dapat digunakan membantu siswa mengembangkan kemampuan komunikasi matematik (LACOE, 2004). Berikut contoh-contoh pertanyaan yang dapat diajukan kepada siswa.
1. Membantu siswa bekerja sama agar memiliki sense matematika, yaitu dengan mengajukan pertanyaan sebagai berikut.
a.      Apakah yang orang lain pikirkan tentang yang kamu katakan?
b.      Apakah kamu setuju? Tidak setuju?
c.       Apakah setiap orang mempunyai jawaban yang sama tetapi mempunyai cara berbeda untuk menjelaskannya?
d.      Apakah kamu memahami apa yang mereka katakan?
2. Membantu siswa menyadari benar tidaknya suatu ide matematika, yaitu dengan mengajukan seperti berikut.
a.      Mengapa kamu berpikir seperti itu?
b.      Mengapa hal itu benar?
c.       Bagaimana kamu menyimpulkan hal itu?
d.      Dapatkah kamu membuat sebuah model untuk menunjukkan hal itu?
3. Membantu siswa mengembangkan penalaran, yaitu dengan mengajukan pertanyaan sebagai berikut.
a.    Apakah hal itu selalu berlaku untuk kondisi lain?
b.    Apakah hal itu benar untuk semua kasus?
c.       Bagaimana kamu membuktikan hal itu?
d.      Asumsi-asumsi apakah yang digunakan?
4. Membantu siswa membuat dugaan, penemuan, dan penyelesaian masalah, yaitu dengan mengajukan pertanyaan sebagai berikut.
a.    Apa yang terjadi jika ...? Bagaimana jika tidak?
b.    Dapatkah kamu melihat polanya?
c.       Dapatkah kamu mempredisksi pola berikutnya?
d.      Apakah persamaan dan perbedaan metode penyelesaianmu dengan temanmu?
5. Membantu siswa menghubungkan ide-de matematika dan aplikasinya, yaitu dengan mengajukan pertanyaan sebagai berikut.
a.      Apakah hubungannya dengan konsep lain?
b.      Ide-ide matematika apakah yang harus dipelajari sebelum digunakan untuk menyelesaikan masalah?
c.       Apakah kamu pernah menyelesaikan masalah seperti ini sebelumnya?
d.      Dapatkah kamu memberikan sebuah contoh tentang ....

Menurut Goetz (2004), mengembangkan kemampuan komunikasi matematik tidak berbeda jauh dengan mengembangkan kemampuan komunikasi pada umumnya. Berikut pendapat dan saran yang dikemukakannya terkait pengembangan komunikasi matematik siswa khususnya kemampuan komunikasi tertulis.
1. Menggunakan teknik brainstorming (curah pendapat) untuk mengawali proses pembelajaran. Curah pendapat dapat mencakup pengungkapan sejumlah konsep yang mungkin dip erlukan untuk mengkomunikasikan ide-ide matematika. Daftar kata atau konsep tersebut dapat ditempatkan di dinding yang memungkinkan siswa dapat mengaksesnya dengan mudah.
2. Ketika siswa menulis dalam seni bahasa, mereka hendaknya berpikir tentang kepada siapa makalah itu ditujukan. Hal ini juga hendaknya terjadi dalam membuat makalah dalam matematika. Apabila tugas menulis digunakan untuk mengevaluasi hasil belajar siswa, mereka hendaknya mengetahui bahwa pembaca makalah mereka adalah guru atau sekelompok penilai yang belum mereka ketahui. Dengan demikian, siswa harus menuliskan dengan jelas berbagai informasi yang relevan sehingga mudah dipahami.
3. Memberikan kesempatan kepada siswa terlebih dahulu untuk mengungkapkan ide­ide secara verbal sebelum menuliskannya. Hal yang demikian akan meningkatkan kedalaman dan kejelasan makalah mereka.
4. Memberi kesempatan kepada siswa untuk menggambarkan ide-ide kuncinya. Selanjutnya meminta siswa untuk mendeskripsikan ide-ide mereka dalam bentuk gambar. Hal ini merupakan strategi penting dalam membantu siswa memulai menulis dalam kelas matematika. Dorong siswa untuk menggambar solusi masalah mereka. Kemudian minta siswa untuk menambah beberapa kata yang memungkinkan dapat mendeskripsikan gambar siswa. Hal ini dilakukan berulang hingga siswa merasa berhasil dan yakin untuk dapat menuliskan ide-ide mereka secara tertulis secara langsung.
5.Mendorong dan memberi kesempatan kepada siswa untuk merevisi dan membetulkan makalah mereka.
6.Melakukan refleksi. Refleksi merupakan kunci pemahaman. Tanpa memberikan kesempatan kepada siswa untuk melakukan refleksi, misalnya memikirkan apa yang sudah dan belum dipahami, pembelajaran matematika hanya merupakan sederet aktivitas yang rutin dan mekanistik.
2.4 Indikator Komunikasi:
1.      Dapat mengkomunikasikan ide dalam pikirannya dengan jelas kepada siswa lainnya
2.      Dapat menggunakan bahasa matematika untuk menyatakan ide tepat.
3.      Dapat menganalisa dan mengevaluasi pemikiran matematika dan strategi orang lain.



Kesimpulan

Dari pembahasan di atas dapat diambil kesimpulan bahwa menumbuh kembangkan kemampuan komunikasi matematika siswa dibangun dengan cara:
(1)   Memberikan kesempatan kepada siswa untuk menuangkan ide, hasil pikiran dari suatu permasalahan ke dalam bentuk gambar, pemisalan maupun dalam bentuk syarat.
(2)   Melatih siswa menghubungkan persoalan matematika dalam kehidupan sehari-hari.
(3)   Menggunakan bahasa matematis secara tepat.
(4)   Membangun kemampuan menganalisa dan mengevaluasi pemikiran matematika dan strategi orang lain.
(5)   Mengingat begitu pentingnya kemampuan komunikasi, maka pembelajaran matematika perlu dirancang dengan baik sehingga memungkinkan dapat menstimulasi siswa dalam mengembangkan kemampuan komunikasinya. Proses komunikasi yang baik berpotensi dalam memicu siswa untuk mengembangkan ide­ide dan membangun pengetahuan matematikanya. Hal demikian akan terjadi dalam pembelajaran matematika yang memanfaatkan masalah terbuka. Dalam upaya menemukan berbagai strategi atau solusi suatu soal terbuka, siswa didorong untuk mengeksplorasi pengetahuan atau ide-ide yang relevan. Dengan cara demikian, siswa akan menjadi lebih kompeten dalam memahami konsep-konsep matematika. Secara singkat dapat dikatakan bahwa proses kompunikasi yang memanfaatkan masalah terbuka dan dirancang dengan baik dapat mendorong siswa memahami materi matematika dengan baik.

 
Daftar Pustaka

Herdian. Kemampuan Komunikasi Matematika, (online), (http://herdy07_wordpress.com ) diakses 22 oktober 2010
Syaban, Mumun.    . Menumbuhkembangkan daya Matematis Siswa. Pendidikan dan Budaya, (online), (http://educare,e-fkipunla.net, diakses (9 Juli 2010).
Shadiq, fajar. 2004. Pemecahan Masalah, Penalaran dan Komunikasi. Makalah disampaikan Pada Diklat Instruktur/Pengembang Matematika SMA Jenjang Dasar di PPPG Matematika. Yogyakarta.
Sahidin, Latif. Membangun komunikasi matematika siswa. (online) Blog Latif Sahidin, diakses 9 Juli 2010
Goetz, Jane. Top Ten Thoughts about Communication in Mathematics. http://www.kent.k12.wa.us/KSD/15/Communication_in_math.htm. 2004.
LACOE (Los Angeles County Office of Education). Communication. http://teams.lacoe.edu. 2004.
NCTM. (2000). Principles and Standards for School Mathematics. Reston: NCTM Peraturan Menteri Nomor 23 Tahun 2006 Tentang Standar Kompetensi Lulusan.
Takahashi, Akihito. Communication as A Process to for Students to Learn Mathematical. http://www.criced.tsukuba.ac.jp/math/apec/apec2008/ papers/PDF/14.Akihiko_Takahashi_USA.pdf. 2006.


Tidak ada komentar:

Poskan Komentar